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1. Introduction

Why do we need quantum simulations ?

One way to analyse non-perturbative system of quantum field theory (e.g. QCD)
→ Lattice simulation

Quantum computer

Google, Sycamore𝛼 0 + 𝛽 1

Unit of information: 
→Qubit 

1
0

New computational methods that have 
been developed recently.

Apply

Lattice field theory
One of the major research interests is to draw 
QCD phase diagrams.

𝑇

𝜇

Hadron phase

QGP phase

?

One key concept is chiral phase transitions.
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1. Introduction

・Monte Carlo method :

・Discretization of space-time : 

𝒪 = !
"!"#$%&

∑#$!
"!"#$%&𝒪 𝜙 # with probability ∝ 𝑒%& ' '

𝜙 = 𝜙!, ⋯ , 𝜙"

𝜙 𝑥
𝑥

𝜙# = 𝜙 𝑥#
𝑥

Classical computer-based analysis methods in Lattice field theory

・Path integral (Lagrangian formalism ) :  

𝒪 =
1
𝑍
∫ 𝐷𝜙 𝒪 𝜙 𝑒%& ' 𝒪 =

1
𝑍
∫ 𝑑𝜙!⋯𝑑𝜙" 𝒪 𝜙 𝑒%& '

𝑍 = ∫ 𝐷𝜙 𝑒$% &

𝑁 : the number of sites𝑥"𝑥!
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Must be positive number !
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Situations where sign problems appear ;  
・Topological term
・real time evolution
・chemical potential 𝜇
etc.

𝑒-./

1. Introduction
However, when 𝑒%& ' ' becomes a complex number, the infamous sign problem appears.

→ We cannot use probability interpretation. 

Monte Carlo method cannot handle (large values of) chemical potentials.

𝑍' 𝜇 ≡ ∫ 𝐷 1𝜓𝐷𝜓 exp −∫ 𝑑(𝑥 1𝜓 𝑖𝐷)𝛾) +𝑚 + 𝜇𝛾( 𝜓

⋮

= 𝑍' −𝜇
∗

≠ 𝑍' 𝜇
∗

𝑍( 𝜇 is not real
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1. Introduction

Quantum computers are computers composed of quantum mechanical elements that obey 
quantum mechanical laws. =Qubits 

Quantum simulation is simulation using a quantum computer.

Quantum simulation can compute physical quantities without sign problems.

We can also deal with chemical potentials 𝜇 with arbitrary values, as a example.

A promising way to solve these problems is Quantum simulation.

4/29



Introduction
Quantum simulation

𝐻 =
1
2
1 1
1 −1 , 𝑋 = 0 1

1 0 , 𝑌 = 0 −𝑖
𝑖 0 , …

Qubit = Quantum bit ;

1-qubit    : 𝜓 = 𝛼! 0 + 𝛼) 1

2-qubits  : 𝛼** 00 + 𝛼*! 01 + 𝛼!* 10 + 𝛼!! 11

⋮

Super position 

Basic quantum gate operators ;

𝐶𝑁𝑂𝑇 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, …

𝜓 𝑈 𝑈 𝜓

Circuitous notation ;

𝑈 = 𝐻, 𝑋, 𝑌 … etc

𝐶𝑁𝑂𝑇 =
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Introduction
Quantum simulation

|0⟩ • H • Y ✌✌✌

|0⟩ ✌✌✌

|0⟩ Rx H ✌✌✌

2. Quantum gate operations

1. Initial state 3. Measurement 

𝒪 = 𝜓 𝒪 𝜓

Theorem : 
Arbitrary unitary operators can be written in terms of basic quantum gates.

∀𝑈 : unitary,  𝑈 = …

We can calculate (measure) expectation values of arbitrary unitary operators
6/29



Introduction
Quantum algorithm for preparing the ground state Ψ

etc…

Adiabatic preparationVQE

Ansatz : 𝜓 𝜃

𝐸 𝜃 = 𝜓 𝜃 𝐻 𝜓 𝜃

quantum

𝜃 : optimization parameters

classical

min
+
𝐸 𝜃 = 𝐸 𝜃, → Ψ = 𝜓 𝜃,

Ψ = lim
+→-

𝒯 exp −𝑖 J
*

+
𝐻. 𝑡 Ψ*

𝐻. 𝑡 : adiabatic Hamiltonian
𝐻. 𝑇 = 𝐻, 𝐻. 0 = 𝐻*

Well-known state

7/29

Through recent research, the algorithms for zero temperature are known to some extent.

Individual states (such as the ground state) can be prepared by quantum circuits in some way.



Introduction

The main question of this paper:
Can quantum simulation handle phenomena such as chiral phase transitions ?

𝒪 =
1
𝑍
Tr 𝒪 𝑒EF.

We have to consider finite temperature and chemical potential

non-unitary operator

→ △ mixed state →no problem

How to treat it in quantum simulation ? QITE and QMETTS algorithms

8/29



Introduction

Short summary 
• In order to deal with finite temperature system in quantum simulation, they focus on 

quantum algorithms called QITE and QMETTS.
• As a example, they consider Gross-Neveu model with chemical potential at (1+1) dim and 

calculate chiral condensation ⟨ M𝜓𝜓⟩ by quantum simulation.  
• They compared quantum simulation result, analytical result and naïve classical simulation
• They showed that quantum simulations could potentially handle chiral phase transitions.. 

Gross-Neveu model ; 

S = ∫ 𝑑)𝑥 M𝜓 𝑖 𝛾/𝜕/ −𝑚 𝜓 + 𝑔 M𝜓𝜓 ) + 𝜇 M𝜓𝛾*𝜓 ⟨ :𝜓𝜓⟩
Quantum simulation

for various 𝑇 and 𝜇
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Outline

1. Introduction

2. The Gross-Neveu model with chemical potential
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4. Numerical results

5. Summary
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2. The Gross-Neveu model

Gross-Neveu model (1+1 dim, finite temperature 𝑇, 1-flavor); 

ℒ = :𝜓 𝑖 𝛾G𝜕G −𝑚 𝜓 + 𝑔 :𝜓𝜓 H

ℒ = :𝜓 𝑖 𝛾G𝜕G −𝑚 𝜓 + 𝑔 :𝜓𝜓 H + 𝜇 :𝜓𝛾I𝜓

𝛾, = 𝜎- , 𝛾! = −𝑖𝜎. , 𝜎- , 𝜎. : Pauli matrices
𝜓 : Dirac fermion, 𝑚 : fermion mass,
𝑔 : coupling constant (dimensionless)

[D. J. Gross, A. Neveu. 1974]

Target : 

𝑒UVW → 𝑒UVWXVYZ

𝜇 : chemical potential

Grand canonical 
ensemble

𝑄 = ∫ 𝑑)𝑥 M𝜓𝛾*𝜓
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[D. J. Gross, A. Neveu. 1974]

Target : 

𝑒UVW → 𝑒UVWXVYZ

𝜇 : chemical potential

Grand canonical 
ensemble

𝑄 = ∫ 𝑑)𝑥 M𝜓𝛾*𝜓

Sign problem appear in Monte Carlo
but Quantum simulation can deal with it
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2. The Gross-Neveu model

ℒ = :𝜓 𝑖 𝛾G𝜕G −𝑚 𝜓 + 𝑔 :𝜓𝜓 H +𝜇 :𝜓𝛾I𝜓
Gross-Neveu model with chemical potential :

𝑚 = 0

𝜓 → 𝛾0𝜓 , 𝛾0 ≡ 𝛾*𝛾!Discrete chiral transformation ; 
M𝜓 𝑖 𝛾/𝜕/𝜓 → M𝜓 𝑖 𝛾/𝜕/𝜓,

M𝜓𝛾*𝜓 → M𝜓𝛾*𝜓

☆This model shows chiral phase transition-like behavior.

M𝜓𝜓 → − M𝜓𝜓

The Lagrangian has discrete chiral sym, but it break dynamically,  

M𝜓𝜓 = 0 (sym preserved phase) ,
M𝜓𝜓 ≠ 0 (sym broken phase)

Order parameter : chiral condensate M𝜓𝜓

𝑚 ≠ 0 We treat M𝜓𝜓 as “quasi-order parameter”
12/29



2. The Gross-Neveu model
First, we analyse GN model using mean-field approximation as a cross-check of 
the quantum simulation;

M𝜓𝜓 = M𝜓𝜓 + 𝜎,   where 1
233

≪ 1

We assume M𝜓𝜓 is constant 
i.e global chiral condensation : M𝜓𝜓(𝑥) = M𝜓𝜓 = cost 

Mean field approximation; 

ℒ = :𝜓 𝑖 𝛾G𝜕G −𝑚 𝜓 + 𝑔 :𝜓𝜓 H + 𝜇 :𝜓𝛾I𝜓

ℒLMM = :𝜓 𝑖 𝛾G𝜕G −𝑚 + 2𝑔 :𝜓𝜓 + 𝜇𝛾I 𝜓 − 𝑔 :𝜓𝜓 H

= ℒNOPQR 𝑀, 𝜇 − 𝑉

Substitute 1𝜓𝜓 = 1𝜓𝜓 + 𝜎 and neglect 𝒪 𝜎/

where, 𝑀 ≡ 𝑚 − 2𝑔 M𝜓𝜓 , 𝑉 ≡ 4%5 (

67 13/29



2. The Gross-Neveu model
Letʼs calculate grand partition function; 

Known results [N. Kapusta, C. Gale, 2006]

We can get grand partition function of GN model analytically

𝐿 : total special distance

14/29

𝑍 ≡ ∫ 𝐷 :𝜓𝐷𝜓 exp ∫ 𝑑H𝑥ℒLMM

= ∫ 𝐷 :𝜓𝐷𝜓 exp ∫ 𝑑H𝑥 ℒNOPQR 𝑀, 𝜇 − 𝑉

= 𝑒E
!
" T#$%&'UV

𝑉 =
𝑀 −𝑚 )

4𝑔



2. The Gross-Neveu model

𝑍 = 𝑒E
W
X T G,X;Z 𝑀 ≡ 𝑚 − 2𝑔 M𝜓𝜓

Grand partition function of GN model :

How to get M𝜓𝜓 ? → Self consistency equation 

Solve  [T
[Z

= 0

, ℒ0''= 1𝜓 𝑖 𝛾)𝜕) −𝑀 + 𝜇𝛾, 𝜓 −
𝑀 −𝑚 /

4𝑔
1𝜓𝜓 =

1
𝑍
∫ 𝒟𝜓𝒟 1𝜓 𝜓 1𝜓 exp ∫ 𝑑/𝑥 ℒ0''

= !
-
∫ 𝒟𝜓𝒟 1𝜓 − 1

2
3
34

+ 5$4
/6

exp ∫ 𝑑/𝑥 ℒ0''

= − 1
2
3
34
log 𝑍 + 5$4

/6

= 37
34

+ 5$4
/6

Should be zero

(gap equation)

15/29

We get :𝜓𝜓



2. The Gross-Neveu model
They numerically solve 89

84
= 0 and get 𝑀

∫*
:𝑑𝑘 , Λ = ;

<
, 𝑎 : Lattice spacing

Introduce momentum cutoff : 

This is an analytical result. It will be compared with quantum simulations later.

Mass generation;
Δ𝑚 = 𝑀 −𝑚 𝑚 = 100 MeV

𝑎 = 1 MeV$!
g = 1 MeV,
T, 𝜇 ∈ 0, 300MeV

𝑀
𝑀

T

T

𝜇
𝜇

1𝜓𝜓 ≠ 0

1𝜓𝜓 = 0

16/29



Outline
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3. Quantum Imaginary Time Evolution (QITE)
In order to simulate thermal system, we have to deal with 𝑒%=> which is not unitary. 

How to prepare 𝑒EF. in quantum simulation ?

Quantum Imaginary Time Evolution (QITE)

Strategy : 

1. Trotterization : 𝑒%=> = 𝑒%?=> 4 + 𝒪 Δ𝛽) , Δ𝛽 ≡ =
4

2. Approximating the non-unitary operation with a unitary operation :

𝑒%?=> = 𝑒%?=@A)𝑒%?=@A( …

𝑒%?=@A' = 𝑒%#?= B. + 𝒪 Δ𝛽) , l𝐴C = l𝐴

[M. Motta , et al. 2019]

Unitary (implementable in quantum simulation) 
17/29



2. Approximating the non-unitary operation with a unitary operation :

3. Quantum Imaginary Time Evolution (QITE)

𝑒ElF. = 𝑒ElFmn(𝑒ElFmn) …

Letʻs consider 𝑁-qubits Hilbert space
In general, the Lattice Hamiltonian can be decomposed into k-local parts.

Let nℎ = 𝑘-local Hamiltonian (𝑘 ≪ 𝑁) 𝑎
𝑥

𝑒ElFmn

𝑘 −qubits

𝑥

𝑒EOlF pq

𝐷 −qubits

Act on 𝑘 neighboring qubits

Expand Hermite op l𝐴 in term of Pauli 
matrices on 𝐷 qubits  (𝑘< 𝐷); 

r𝐴 =t
)

𝑎) u𝜎) , u𝜎) =v
89!

:

u𝜎 8
)!

𝜇 = 𝜇!, … , 𝜇: , 𝜇8 ∈ 𝐼, 𝑋, 𝑌, 𝑍 Pauli matrix on 𝑙-th site
18/29



3. Quantum Imaginary Time Evolution (QITE)
The construction of Hermite op M𝐴

ΔΨA 𝛽 ≡ !
D ?=

𝑒%?=@A − 1 Ψ 𝛽

ΔΨ. 𝛽 ≡ 𝑒%E?= B. − 1 Ψ 𝛽

Compare the difference of state induced by two time evolutions

Objective function : 𝐹 𝑎 ≡ ΔΨA 𝛽 − ΔΨ. 𝛽
)

Minimize 𝐹 𝑎 . → 8F
8<*

= 0 for all 𝜇 = 𝜇!, … , 𝜇G,

𝑎) = 𝑎)" , … , 𝑎)# , r𝐴 =t
)

𝑎) u𝜎)

𝑺 + 𝑺X 𝒂 = 𝒃

where, S/H ≡ Ψ 𝛽 q𝜎C/ q𝜎H Ψ 𝛽 , 𝑏/ ≡ − #
D ?=

Ψ 𝛽 𝐻 q𝜎/ − q𝜎C/𝐻 Ψ 𝛽

4: equations , (𝐷 < 𝑁)

19/29



3. Quantum Imaginary Time Evolution (QITE)

1. Measure 𝑺 and 𝒃 in quantum simulation
2. Solve equations 𝑺 + 𝑺+ 𝒂 = 𝒃 and get 𝒂
3. Get 𝑒%?=> in terms of l𝐴

Let me summarize the procedure of QITE

𝑒UVW

Measure 𝑺, 𝒃
and solve 𝑺 + 𝑺1 𝒂 = 𝒃

We can implement 𝑒EF. in quantum simulation 20/29



3. QITE and QMETTS
How to calculate thermal expectation value 𝒪 = !

ITr 𝒪 𝑒
%=> efficiently 

by quantum simulation? 

Quantum Minimally Entangled Typical Thermal States (QMETTS) [SR. White 2009]

1. Choose initial state randomly 
from product states 
𝑖 = 0101100… ,…etc

2.   Evolved state
𝜓# = 𝑒%=>/) 𝑖

3. Estimate 
⟨𝜓#|𝒪 𝜓#

QMETTS
algorithm

QITECollapse by 
quantum operation

Measurement
21/29



3. QITE and QMETTS

Continue QMETTS cycles 𝑁& times, until convergence

QITE and QMETTS :  𝒪 ≅ �
�*
∑-��
�* ⟨𝜓-|𝒪 𝜓-

𝑖

𝑒%?=@>

𝑒%?=@>

𝜓#

Comments of QITE and QMETTS
✔ Inherently, this algorithm does not require ancilla qubit.

→ Small number of qubits
✔ No ansatz is needed. 

→ There is no optimization issue ↔ VQE

△ Computation cost depends on correlation length. 
c.f. 𝑺 + 𝑺1 𝒂 = 𝒃 , 4: equations , (𝐷 < 𝑁)

✔ As the size of the system (or dimension of space time) increases, the "$
/%

tend to be small.
→ Promising methods for future quantum computers.

22/29
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4. Numerical simulation
Letʼs implement a quantum simulation in Gross-Neveu model.

1. Divide the space into 𝑁/2 points with lattice spacing 𝑎. 
2. Represent Dirac fermion 𝜓 as staggered fermion

𝜒"$!𝜒, 𝜒!

𝜓 𝑥 = 𝑖𝑎 =
𝜓K(𝑥 = 𝑖𝑎)
𝜓L(𝑥 = 𝑖𝑎) = !

<
𝜒)#
𝜒)#M! , 𝑖 = 0, 1, …𝑁/2 − 1.

𝐻 = ∫ 𝑑𝑥 :𝜓 𝑖 𝛾�𝜕� +𝑚 𝜓 − 𝑔 :𝜓𝜓 H − 𝜇 :𝜓𝛾I𝜓Hamiltonian : 

Lattice Hamiltonian :

𝐻 = −
𝑖
2𝑎

|
N$*

"%)

𝜒N
C𝜒NM! − 𝜒NM!

C 𝜒N +𝑚|
N$*

"%!

−1 N 𝜒N
C𝜒N + interaction term

staggered fermion

23/29



4. Numerical simulation

Lattice Hamiltonian : 𝐻 = −
𝑖
2𝑎

|
N$*

"%)

𝜒N
C𝜒NM! − 𝜒NM!

C 𝜒N +𝑚|
N$*

"%!

−1 N 𝜒N
C𝜒N + interaction term

In order to implement the quantum simulation, we have to rewrite everything in terms of Pauli matrices

Jordan-Wigner transformation: [P. Jordan and E. Wigner. 1928]

𝜒N =
𝜎O
N − 𝑖𝜎P

N

2
�
Q$*

N%!

−𝑖𝜎I
Q

𝜎;
< , 𝜎.

< , 𝜎-
< : Pauli matrices on 𝑛-th site 

Qubit Hamiltonian : 𝐻 =
1
4𝑎

|
N$*

"%!

𝜎O
)N 𝜎O

)NM! + 𝜎P
)N 𝜎P

)NM! +
𝑚
2
t
<9,

"$!

−1 <𝜎-
< + (interaction term)

Everything are written in term of Pauli matrices. 
24/29



4. Numerical simulation

Qubit Hamiltonian : 𝐻 =
1
4𝑎

|
N$*

"%!

𝜎O
)N 𝜎O

)NM! + 𝜎P
)N 𝜎P

)NM! +
𝑚
2
t
<9,

"$!

−1 <𝜎-
< + (interaction term)

nℎ′N = 𝜎O
)N 𝜎O

)NM! + 𝜎P
)N 𝜎P

)NM!

→ 𝑒%?=@A+ : 1-local operator 𝑥

𝑒%?=RA+

2−qubits

𝑥

𝑒%E?= B.

4−qubits

For example, 
nℎN = −1 N𝜎I

N

→ 𝑒%?=@AS+ : 2-local operator

They set 𝑁 = 4, and prepare Hermite op l𝐴 by using 4 qubits for simplicity. 

Other terms can be written in the same way. 

etc…
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4. Numerical simulation

We compare the following three methods

1. Quantum simulation results by QITE and QMETTS. 

2. Analytical calculation by mean field approximation.

3. Exact diagonalization 

This is a naïve matrix calculation using a classical computer 
(precise Hamilton simulation but very costly)

1𝜓𝜓 = 1𝜓𝜓 + 𝜎,   where =
>??

≪ 1

26/29



4. Numerical simulation

M𝜓𝜓

Quantum Simulation results;

𝑁 = 4, 𝑚 = 100 MeV, 𝑎 = 1 MeV$!, g = 1 MeV, T, 𝜇 ∈ 0, 300MeVTemperature dependence

Analytical calculation by mean 
field approximation

𝑇

1𝜓𝜓 ≠ 0

1𝜓𝜓 = 0

∎ : QITE and QMETTS, 
: exact diagonalization 
: analytical results, 

Quantum simulations gave consisitent results.

1𝜓𝜓 = 0

1𝜓𝜓 ≠ 0

27/29



4. Numerical simulation

M𝜓𝜓

Quantum Simulation results;
Analytical calculation by mean 
field approximation

𝑇

1𝜓𝜓 ≠ 0

1𝜓𝜓 = 0

∎ : QITE and QMETTS, 
: exact diagonalization 
: analytical results, 

1𝜓𝜓 = 0

1𝜓𝜓 ≠ 0

28/29Quantum simulation is valid even for finite chemical potentials where sign problems occur.

Chemical potential dependence 𝑁 = 4, 𝑚 = 100 MeV, 𝑎 = 1 MeV$!, g = 1 MeV, T, 𝜇 ∈ 0, 300MeV
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5. Summary

• The conventional method (Monte Carlo) has difficulty in dealing with finite chemical 
potential due to infamous sign problem

• They performed quantum simulations on the Gross-Neveu model and showed that quantum 
simulations work successfully even with finite chemical potential.

• The QMETTS algorithm which used in this study, is expected to be advantageous when 
dealing with large system.

• This could be a first step towards dealing with phenomena such as chiral phase transitions 
in quantum computers developed in the future.

Thank you for attention !
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Appendix

𝒪 =
1
𝑍
Tr 𝒪 𝑒EF. =

1
𝑍
U
��I

H+E�

𝑒EF�, 𝑘 𝒪 𝑘

Diagonalization cost : 𝒪 2T"
Trace cost :𝒪 26"

Computational cost of exact diagonalization

𝑁 = 4 →2@" + 2(" = 69,632

𝑁 = 5 →2(" = 1081,344
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𝑍' 𝜇 ≡ ∫ 𝐷 1𝜓𝐷𝜓 exp −∫ 𝑑(𝑥 1𝜓 𝑖𝐷)𝛾) +𝑚 + 𝜇𝛾( 𝜓

= det 𝑖𝐷)𝛾) +𝑚 + 𝜇𝛾(

= det 𝛾A(𝑖𝐷)𝛾) +𝑚 + 𝜇𝛾()𝛾A

= det −𝑖𝐷)𝛾) +𝑚 − 𝜇𝛾(

= det 𝑖𝐷)𝛾) +𝑚 − 𝜇𝛾( B

= 𝑍' −𝜇
∗
≠ 𝑍' 𝜇

∗
𝑍' 𝜇 is not real

𝛾A𝛾)𝛾A = −𝛾)

𝛾) B = 𝛾)
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Some applications to QFT ;
✔ 𝜙6 theory (algorithm only) [SP. Jordan, et al. 1111.3633]

✔ Fermionic field theory (Gross-Nuveu model, algorithm only) [SP. Jordan, et al. 1404. 7115]

✔ Schwinger model (ground state & energy simulation) [M. Honda et al. 2105.03276]



Letʼs calculate grand partition function; 

Known results [N. Kapusta, C. Gale, 2006]

We can calculate grand partition function of GN model

𝐿 : total special distance
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