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1. Introduction

One way to analyse non-perturbative system of quantum field theory (e.g. QCD)

— Lattice simulation

Lattice field theory Quantum computer
One of the major research interests is to draw RS iRrermation: |
QCD phase diagrams. —Qubit "57" . .
T 4 ) N N
QGP phase 140 e
@ o -l
Hadm 5 e
" a|0) + B|1) Google, Sycamore
- New computational methods that have
One key concept is chiral phase transitions. been developed recently.

» Why do we need quantum simulations ?
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1. Introduction

Classical computer-based analysis methods in Lattice field theory

- Discretization of space-time :

b (%) ¢ = p(x;)

. T O T Y R
> X ‘ rrrrrrrrrr = =x

X1 XN N : the number of sites

- Path integral (Lagrangian formalism ) :

1 1
(0) =] Dp 0(¢) e~SI#] ‘ (0) = - [ d§y - dpy O({}) e —SL{¢)]
Z = fD(P 6_5[¢] {¢} - (d)lr""d)N)

- Monte Carlo method :

(0)y = —L— yilsemple ({5 ®}) with probability o e=S{¢®]]

Nsample =1
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1. Introduction

Classical computer-based analysis methods in Lattice field theory

- Discretization of space-time :

b (x) ¢ = p(x;)

. T O T Y R
> X ‘ rrrrrrrrrr = =x

X1 XN N : the number of sites

- Path integral (Lagrangian formalism ) :

1 1
(0) =] Dp 0(¢) e~SI#] ‘ (0) = - [ d§y - dpy O({}) e ~SL#)]
Z = fD(P 6_5[¢] {¢} - (d)lr""d)N)

- Monte Carlo method :

(0) = —L— ysamete o({p D)) With&)robability x e—s[{cbm}]J

Nsample =1

Must be positive number !
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1. Introduction

However, when e~} becomes a complex number, the infamous sign problem appears.

— We cannot use probability interpretation.

= I _ 4 1 4 4
Situations where sign problems appear ; Zy(w) = | DYDY exp|—[ d*x i (iDy* +m + py*)y|
- Topological term
. real time evolution e!'Ht = (Zf(—#))
. chemical al u | :
[ chemical potential u i(Zf(u)) |
E]lkeN Ze(u) is not real

» Monte Carlo method cannot handle (large values of) chemical potentials.
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1. Introduction

A promising way to solve these problems is Quantum simulation.

/Quantum simulation is simulation using a quantum computer.

< Quantum computers are computers composed of quantum mechanical elements that obey

quantum mechanical laws. =Qubits

\Quantum simulation can compute physical quantities without sign problems.

4

We can also deal with chemical potentials u with arbitrary values, as a example.
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Introduction

Quantum simulation

Qubit = Quantum bit ;

Super position
/

1-qubit : |Y) = a1|0) + ay|1) / / Circuitous notation ; \
2‘quitS . a00|00)+a01|01)+0(10|10)+a11|11)

W) — U — UlY)

U=HX,Y ..etlc

Basic quantum gate operators ;

1 —i ®
Hzﬁq D)X= )= o)~ CNOT =

_ O

CNOT =

S O O K
S O -k O
_o O O
O = O O
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Introduction

Quantum simulation

Sl s
1. Initial state  |0) b 3. Measurement
_ J 1

N B s

Rz H
v (0) = @W|Oo[y)

2. Quantum gate operations

Theorem :
Arbitrary unitary operators can be written in terms of basic quantum gates.

U unitary, U = \% I_

» We can calculate (measure) expectation values of arbitrary unitary operatorsw29




Introduction

Quantum algorithm for preparing the ground state |W)

VQE Adiabatic preparation
6 : optimization parameters

H,(t) : adiabatic Hamiltonian
Ansatz : |Y(6))

Ho(T) = H,  Hy(0) = Hy
classical ( )quantum etc: -
T
E(6) = (p(0)Hp(0)) ) = Jim T exp (—i f HA(t)) w,)
—00 0

/

minE(6) = E(6o) — [¥) = [$(6,)) Well-known state

Through recent research, the algorithms for zero temperature are known to some extent.

Individual states (such as the ground state) can be prepared by quantum circuits in some way.
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Introduction

The main question of this paper:

Can quantum simulation handle phenomena such as chiral phase transitions ?

We have to consider finite temperature and chemical potential

— /\ mixed state —no problem

(0) = %Tr[()]

non-unitary operator

How to treat it in quantum simulation ? » QITE and QMETTS algorithms
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Introduction

Short summary

 |n order to deal with finite temperature system in quantum simulation, they focus on
quantum algorithms called QITE and QMETTS.

« As a example, they consider Gross-Neveu model with chemical potential at (1+1) dim and

calculate chiral condensation (yy) by quantum simulation.
« They compared quantum simulation result, analytical result and naive classical simulation

« They showed that quantum simulations could potentially handle chiral phase transitions..

Gross-Neveu model ; Quantum simulation

S=[d%x |¢(i yho, —m)Y + g@y)? + u Py Y] ‘ (1/31,0) for various T and u
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2. The Gross-Neveu model with chemical potential
3.Quantum algorithm (QITE, QMETTS)
4. Numerical results

Hh.Summary
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2. The Gross-Neveu model with chemical potential
3.Quantum algorithm (QITE, QMETTS)
4. Numerical results

Hh.Summary
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2. The Gross-Neveu model

/Gross—Neveu model (141 dim, finite temperature T, 1-flavor); [D.J. Gross, A. Neveu. 1974] )
Tl = N2 ¥® =o0,, y! = —ioy, o0y 0y : Pauli matrices
L=y(iy"d, —m)yY + g@y) o | .
Y : Dirac fermion, m: fermion mass,
g :coupling constant (dimensionless)
\_ _J
Grand canonical e—BH N e—,BH+BuQ Q = [ d?xyy°y
ensemble

Target: £L=9(iy*o, —m)Y+g @)% + 1 Py°Y . chemical potential
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2. The Gross-Neveu model

/Gross—Neveu model (141 dim, finite temperature T, 1-flavor); [D.J. Gross, A. Neveu. 1974] )
e = N2 ¥® =o0,, y! = —ioy, o0y 0y : Pauli matrices
L=y(iy*o, —m)yp + g W) _ . .

Y : Dirac fermion, m: fermion mass,
g :coupling constant (dimensionless)

\ J

Grand canonical e—BH N e—,BH+BuQ Q = [ d?xyy°y
ensemble

Target: £L=9(iy*o, —m)Y+g @) Hr Yy | . chemical potential

L)

Sign problem appear in Monte Carlo
but Quantum simulation can deal with it
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2. The Gross-Neveu model

Gross-Neveu model with chemical potential :
L=1(iyto, —m)p + g @)? +upy°y
Y This model shows chiral phase transition-like behavior.

Discrete chiral transformation: ¥ — Vsl/J y° = oyl

R T P
Yy - Py

-

m = (0 The Lagrangian has discrete chiral sym, but it break dynamically,

~

(¥np) = 0 (sym preserved phase) ,

Order parameter : chiral condensate (1/31/)) <_ ) ( brok hase)
YY) # 0 (sym broken phase

m# 0 We treat (1)) as “quasi-order parameter”

\_ J

12/29




2. The Gross-Neveu model

First, we analyse GN model using mean-field approximation as a cross-check of
the quantum simulation;

Mean field approximation;
Yy = (1/)1/)) + o, where ‘W‘ &1

We assume (yp) is constant
i.e global chiral condensation : (¥ (x)) = (Yp) = cost

L=y(iy*d, —m)Y +g @) + uPy°y
1 Substitute Y = (Y1) + o and neglect 0(a?)

Lopr = P(iy#a, —m + 2g(P) + uy° ) — g(Pp)’

— LDirac(M; ,Ll) -V where, M = m — 2g<l/;llj), V= (M=m)”

4g 13/29




2. The Gross-Neveu model

Let’s calculate grand partition function;

/= fDlle/) exp[f dZXLeff] V= (M — m)z
_ , 4y
= fDI/JDlp exp[f d“x(Lpirac(M, u) — V)] L : total special distance
— e‘%(QDirac‘H/)
a )
Known results [N. Kapusta, C. Gale, 2006]
Opirac(p, T; M) = _2 /00 dk [wk +Tln(1 + e P@Hr)) L Tin(1 + e_ﬁ(‘*”“_“’))]
T Jo
_ where w,, = Vk2 + M?2. D

» We can get grand partition function of GN model analytically
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2. The Gross-Neveu model

Grand partition function of GN model :
L

(M —m)? 2

Q(p, T; M) =
g (1 ) 19 -

where wr, = VK2 + M2. M =m — 29<1/31/)>

— — / dk [wk + TIn(1 + e P@rtm)) L TIn(1 + e_ﬂ(“”“_“))]
0

_/

How to get () ? — Self consistency equation

_ 1 -
(Pw) = J DYDY ¥ exp[f dx Log]
m-M

_fDl/)Dlp( L6M+ 29

) exp[f d?x Leff]

_ m-M
L oM 8 2g

_ 00 m-m

oM 29

Should be zero

, Lopr=1P(iyHd, — M + uy° ) —

(M —m)?
4g

90
Solve — =0
oM

m) We get (Yy)

(gap equation)
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2. The Gross-Neveu model

They numerically solve g—f\; = 0and get M

Introduce momentum cutoff :

M — 2 2 00
Qp, T5 M) = ( 4gm) - = / dk [wk +Tin(l + e P8y L TIn(1 + e—/f(w'c—m)]
0

fOAdk, A =§, a : Lattice spacing

Mass (MeV)
300 040 M
M T 250 I1030
Z 103 1 > 2001 102.0
Mass generation; 2 1021 £ 150 o o1
D £ ]
Am=M-m = 101 ] .
&

N m = 100 MeV
100 " / L 101.0 -
1o \/ 005 L 1 MeV
4
0 0 50 - 100.5 — 1 M V
) ev,
T 00 100 (¢ £ 0 8

Craty, L 100.0 T,ue [O, 300M€V]

€ Moy, 300 300 e SO0 100 150 200 250 300
T e[/) C\\e“\\ u Chemical Potential (MeV) #

» This is an analytical result. It will be compared with quantum simulations later. 16/29




3.Quantum algorithm (QITE, QMETTS)
4. Numerical results

Hh.Summary



3. Quantum Imaginary Time Evolution (QITE)

In order to simulate thermal system, we have to deal with e which is not unitary.

How to prepare e A" in quantum simulation ?

» Quantum Imaginary Time Evolution (QITE) [M. Motta . et al. 2019]

/'
1. Trotterization : e BH = (e‘AﬁH)M + 0(AB?) , AB =

2=

2. Approximating the non-unitary operation with a unitary operation :

Strategy : < e~ABH — ,—ABhy,—ABR,
e~BBRi = =I0BA 4 9(AR2), At =4
\~

Unitary (implementable in quantum simulation)
17/29




3. Quantum Imaginary Time Evolution (QITE)

2. Approximating the non-unitary operation with a unitary operation :

Let's consider N-qubits Hilbert space
In general, the Lattice Hamiltonian can be decomposed into k-local parts.

o~ ABH — e—Aﬁﬁl e—Aﬁﬁz

Let h = k-local Hamiltonian (k « N) q [e_Aﬁh]
Act on k neighboring qubits ;_’. o~ l l l oo X
k —qubits
Expand Hermite op 4 in term of Pauli
matrices on D qubits (k< D)l;) VY
A — A~ A — ~()
A_Zaﬂaﬂ’ U“_HU_'“\l *—o—o l—l l l l *—o—0— X
u =1 g >
W=y, oy, W E{LXY,Z}  Pauli matrix on I-th site D —qubits
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3. Quantum Imaginary Time Evolution (QITE)

The construction of Hermite op A

Compare the difference of state induced by two time evolutions

1

2%,(8)) = (e — 1) 1¥(R))

AW, (B)) = (e72B4 — 1) |w(B))

Objective function : F(a) = ||A‘Ph(,3)> — |ALPA(,8)>|2 ay = (Quy) ) Ay ), A= Zauﬁu

Minimize F(a). — :TF =0 forall u = uq, ..., up,
u

» [(S + ST)a = b} 4P equations, (D < N)

i

where, S, = (¥(8)] 81,6, [$(B)), by = — == (¥(B)|(H5, — &%, H) [¥(B)
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3. Quantum Imaginary Time Evolution (QITE)

Let me summarize the procedure of QITE
1. Measure §$ and b in quantum simulation
2. Solve equations (S +ST)a =b and get a

3. Get e 2FH interms of 4

e PH
A
A A
)~ Uy — U — = — U — o — Uy —
. Measure S, b
I [l —-iMBA )
Y - U=e and solve (§+ST)a=0»b

» We can implement e 7?7 in quantum simulation e




3. QITE and QMETTS

How to calculate thermal expectation value (0) = %Tr[ 0 e~PH | efficiently
by quantum simulation?

» Quantum Minimally Entangled Typical Thermal States (QMETTS) [SR. White 2009]

1. Choose initial state randomly
from product states

i) =10101100...), ...etc

Collapse by
gquantum operation

QMETTS QITE

algorithm

| 2. Evolved state

(WilOl;) Measurement ;) = e PH/2 i)

3. Estimate
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3. QITE and QMETTS

~ ~ |¢L>
Continue QMETTS cycles Ng times, until convergence o —ABH t \ i
\ /
1 ———— — — —t———>
QITE and QMETTS : {0O) = N—Szlivjl(l/)il(?ll/)i) apit | N
g _J —e—o—o—o—\—o—o—-o—o—
)

Comments of QITE and QMETTS

vV Inherently, this algorithm does not require ancilla qubit.
— Small number of qubits

v/ No ansatz is needed.
— There is no optimization issue < VQE

vV As the size of the system (or dimension of space time) increases, the = tend to be small.
— Promising methods for future quantum computers.

N
2
/\ Computation cost depends on correlation length.

c.f. (S+ST)a=b ,4P equations, (D < N)
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4. Numerical results

Hh.Summary



4. Numerical simulation

Let’s implement a quantum simulation in Gross-Neveu model.

Hamiltonian: H = f dx I,E(l ]/161 + m)l,/J — 9 (l/;l/J)z — U l/;)/olp

1. Divide the space into N/2 points with lattice spacing a.

2. Represent Dirac fermion y as staggered fermion

staggered fermion

W(x = ia) = (i‘;g _ zg) == (X)Z(lzil) i=0,1,..N/2 — 1.

Xo X1 AN-1
(D (e (e [ ([ >

Lattice Hamiltonian :
N-2 N-1

(X;rz)(nﬂ — X;[H)(n) +m Z (=)™ )(i)(n + (interaction term)
n=0

23/29




4. Numerical simulation

In order to implement the quantum simulation, we have to rewrite everything in terms of Pauli matrices

: N i
Lattice Hamiltonian : ~3 z ()(;rl)(nﬂ — )(;rlﬂ)(n) +m Z (=)™ ¥y, + (interaction term)]

Jordan-Wigner transformation: [P. Jordan and E. Wigner. 1928]

(n) (n) n—1
Oy = — IO
Yo = X . Y ‘ ‘( wZ(J))
Jj=0

o™, o™, a{™: Pauli matrices on n-th site

N-1

1
Qubit Hamiltonian: H = i 2 (ng) )$2n+1) + 0o (Zn) (2n+1)) Z( 1)" ) 4 (interaction term)
a

n=0

Everything are written in term of Pauli matrices.
24/29




4. Numerical simulation

N-1
1

N-1
m
Qubit Hamiltonian : =1 Z (Zn) (Z"H) + o (Zn) (2n+1)) + B Z (—1)"02( t (interaction term)

@ n=0 n=0

For example o—ABFy

— ( 1)11 (n)
— — —@o
e~ABhn - 1_|ocal operator — - X
2—qubits
E’ _ O_)EZn) )((2n+1) +O_1£2n)0_1£2n+1)

. o —iABA
— e8P - ?-|ocal operator
. — i l: .

Other terms can be written in the same way. 4—qubits

X

They set N = 4, and prepare Hermite op 4 by using 4 qubits for simplicity
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4. Numerical simulation

We compare the following three methods

1. Quantum simulation results by QITE and QMETTS.

2. Analytical calculation by mean field approximation.

Yy = (YY) + o, where ‘@;‘M « 1
3. Exact diagonalization

|

This is a naive matrix calculation using a classical computer
(precise Hamilton simulation but very costly)
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4. Numerical simulation

Temperature dependence N=4 m=100MeV, a=1MeV™} g=1MeV, T,u € [0,300MeV]

Quantum Simulation results; _ _
ﬂnalytlcal calculation by mean \

field approximation
Mass (MeV)
- QITE 300 104.0
(lplp = Exact Diagonalization
> p=0MeV 250 - 103.0
= p=25MeV
< -0.75¢
I p=50 MeV S
5 > 200 1 102.0
5 -1.00 h=75MeV =)
<§ k=100 Me¥ 2 150 101.5
- -1.25 p=125MeV % .
g p=150 MeV )
~1.50 p=175 MeV = 100 / - 101.0
_ | p=200 MeV Q>
175 B 50 > - 100.5
-2.00 (l/)l/)) # 0
' ' — 100.0

0 100 200 300 400 500 50 100 150 200 250 300
Temperature (MeV) T Chemical Potential (MeV)

& QITEand QMETTS, ——: analytical results,

k - - =-:exact diagonalizaW

Quantum simulations gave consisitent results. 27/29




4. Numerical simulation

Chemical potential dependence N =4, m=100MeV, a =1MeV-1, g=1MeV, T,u € [0,300MeV]

Quantum Simulation results; _ _
ﬂnalytlcal calculation by mean \

0.00F 50 = 0 field approximation
(l/)d)) - Mass (MeV)
( l/; l/}>—0.25 [ 300 104.0
S ~050r ¢ QIE 250 1 103.0
§ —=—- Exact Diagonalization
3 -075F —— T=25MeV _
g T=50 MeV % 200 A 102.0
2 -1.00f T =100 MeV EJ _\
3 —— T=125MeV 2 150 2, L 101.5
T -125¢ —— T=250 MeV 5 ;
= _ g
© sl T=300MeV 2 100 / F101.0
~1.75} _ 50 ' L 100.5
(Yy) = 0
_200 o 1 1 1 1
0 100 200 300 400 500 50 100 150 200 250 300 0
Baryochemical Potential (MeV) T \ Chemical Potential (MeV) /
& QITEand QMETTS, ——: analytical results,

K - - - exact diagonaliza’W

Quantum simulation is valid even for finite chemical potentials where sign problems occur. 2529




Hh.Summary



« The conventional method (Monte Carlo) has difficulty in dealing with finite chemical
potential due to infamous sign problem

 They performed quantum simulations on the Gross-Neveu model and showed that quantum
simulations work successfully even with finite chemical potential.

« The QMETTS algorithm which used in this study, is expected to be advantageous when
dealing with large system.

« This could be a first step towards dealing with phenomena such as chiral phase transitions

in quantum computers developed in the future.

Thank you for attention !
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Appendix

Computational cost of exact diagonalization

2N -1
1 1
(0) = ZTi[ 0P| == " eFFe (k|olk)
k=0

Diagonalization cost : 0(23V)
Trace cost :0(24M)

N=4 —23N 42N =69,632

N=5 —2*N =1081,344
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Appendix

Zs () = [ DYDY exp[—[ d*x P (iDy* +m + uy* )]

= det|iD,y* + m + py*]

= det[y®(iD,y* + m + uy*)y>
' g | yeyhy® = —yH

= det:—iDH)/” +m — yy‘*]

— det l(iDﬂyﬂ +m—uy4)T] > ()T = yH

= (Zf(_“))* * (Zf(#))* Z(w) is not real
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Appendix

Some applications to QF T ;
V' ¢* theory (algorithm only) [SP Jordan, et al. 1111.3633]
V' Fermionic field theory (Gross-Nuveu model, algorithm only) [SP. Jordan, et al. 1404. 7115]
Vv Schwinger model (ground state & energy simulation) [M. Honda et al. 2105.03276]
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Appendix

Let’s calculate grand partition function;

Z:/sz/DzZexp :/Oﬂd’r/dl’ﬁeff,E]

_ "B
= /D«p/Dwexp / dT/d:E (Lpirac.E —V)] Y = (M —m)?/dg
_5LV/D¢/Dwexp [/ dT/d-’EﬁDlrac E] L : total special distance

—LV/TZ

\
Dirac "Known results [N. Kapusta, C. Gale, 2006]

~-L Opiract+V 2 o
=€ T (Diract+V) . Qpirac(p, T; M) = —— / dk [wk +TIn(1 + e P@tr)) L TIn(1 + e_ﬁ(“’k_“‘))]
0

T
where wr, = Vk2 + M?2.

\_ _/
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» We can calculate grand partition function of GN model




